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Abstract. The two-dimensional inhomogeneous zeta-function series (with homogeneous part 
of the most general Epstein type) Cm,nez@m2 + bmn + cn' + q)-' is analytically continued 
in the variable s using zeta-function techniques. A simple formula is obtained which extends 
the Chowla4elberg formula to inhomogeneous Epstein zeta-functions. The new expression is 
then applied to solve the problem of computing the determinant of the basic differential operator 
that appean in an attempt at qwtizing gravity by using the Wheeler-De Wilt equation in 
(2 f 1)-dimensional spacetime with the toNS topology. 

1. Introduction 

In a recent publication [l], dealing with the approach to (2+1)-dimensional quantum gravity 
which consists of making direct use of the Wheeler-De Witt equation, Carlip has come 
across a rather involved mathematical problem. Of course, none of the approaches that 
have been employed for the quantization of gravity is simple, for different reasons. Here 
we will concentrate only on the specific point of the whole problem that has been raised 
by Carlip, and which concerns the calculation of the basic determinant that appears in 
his method for the case of the torus topology. It is the determinant corresponding to a 
differential operator, DO, which has the following set of eigenfunctions and eigenvalues (for 
explicit details, see [l] and references therein): 

where m and n are integers, and t and tz are the usual labels corresponding to the standard 
two-dimensional metric for the torus 

dlz=z;'[dx+sdy[2 (2) 
with x and y angular coordinates of period'l and r = q + i q  the modulus (a complex 
parameter [l]). VO is the spatial integral of the relevant potential function [l]. 

At that point, the physical difficulty has boiled down to a well formulated mathematical 
problem which, unfortunately, has no straightforward solution from, for example, the zeta 
functions which commonly appear in physical or mathematical references, since, in fact, the 
best way to obtain the determinant once the spectrum of the operator is known is through 
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the calculation of the corresponding zeta function, {D,. After simplifying the notation a 
little, one easily recognizes that one has to deal here with a series of the form 

F(s; a, b, c; q) = '(am* + bmn + cn2 + q)-" (3) 

the prime meaning that the term with both m = n = 0 is absent from the sum. Of course 
this distinction need not be made when q # 0 (the value of such term being then t&ially 
q-'), but it is certainly important for considering the particular case q = 0 (see later). One 
is interested in obtaining the function F(1; a, b, c; q) of a,  b, c, q, since this expression 
comes inside a functional integral which involves the relevant variables of the problem. As 
it stands, equation (3) has no sense for s = 1, and it is also clear that analytic continuation 
to such a value of s hits a pole and, therefore, must be conveniently defined. This has been 
done successfully in the literature (see @I). 

In what follows we will calculate the sum ( 3 t a n d  its corresponding analytical 
continuation-and also its derivative with respect to s, by means of zeta-function techniques. 
The final expression will be remarkably simple, involving just (apart from finite sums) a 
quickly convergent series of exponentially vanishing integrals (of Bessel-function type). It 
is, in fact, a generalization of the celebrated (by mathematicians) Chowla-Selberg formula. 
We will proceed step by step, starting from some particular, more simple cases. 

The case b = 0 will be treated in section 2, and the general homogeneous case (q = 0) 
in section S t h i s  is the Chowla-Selberg formula itself. In section 4 we will derive the 
new formula, which is capable of dealing with the general situation (q # 0). The explicit 
use of the formula in the quantization of (2 4. I)-dimensional gravity will be treated in 
section 5, where specific results for this physical application will be given. For the sake of 
comparison, we present in section 6 an alternative treatement by means of Eisenstein series. 
Finally, section 7 is devoted to conclusions. 

m.n& 

Q 

2. Caseb=O 

Remember that 

define the Riemann and Hurwitz zeta functions, respectively, which can be analytically 
continued in s as meromorphic functions to the whole complex s-plane (with just a simple 
pole at s = 1). In general, in zeta-function regularization we are finished when the result 
can be expressed in terms of these simple functions. However, in the more difficult case 
involved here, we will have a different function as the most elementary one (see (21) below). 

Considering again the general series (3), the parenthesis in this expression must be 
visualized in an inhomogeneous quadratic form: 

restricted to the integers. We shall assume all the time that b z 0, that the discriminant 

A = 4ac - b2 > 0 (6) 
and that q is such that Q(m, n ) + q  # 0, Vm, n E Z. In terms of the corresponding physical 
constants, as they appear in [l], these conditions are indeed satisfied (for the physically 
relevant cases). We start by studying some particular situations which, for the benefit of 
the reader, may be interesting to recall. 
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The case b = 0 corresponds to a situation that we have considered in former papers 
(even in more general terms) and for which we have already derived explicit formulae [2] 
(see also 131). In particular, for the series 

we have obtained the following expression: 

where 

with Ku being the modified Bessel functions of the second kind. In order to specify the 
formula for the present case, we just have to substitug: cl = cz = 1 (the Hurwitz zeta 
functions simply turn into ordinay Riemann ones), a1 = a, a2 = c and c = q,  and be a bit 
careful with the summation range; but this can easily be taken care of (see, for instance, 
[4] where the explicit formulae relating the cases of doubly infinite summation ranges and 
simply infinite ranges ire given). 

3. C a s e p = O  

Here, the ChowlaSelberg formula [5] for the (general homogeneous) Epstein zeta function 
[6] corresponding to the quadratic form Q is to be used. (This is an expression well known 
in number theory [7] but not so much in mathematical physics.) The result is 

where 

q ( n )  = E d s  
dln 

namely the sum over the s-powers of the divisors of n.  
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This formula is very useful and its practical application quite simple. In fact, the two first 
terms are just nice, while the last one (impressive in appearence) is very quickly convergent 
and thus absolutely harmless in practice: only a few first terms of the series need to be 
calculated, even if one needs exceptionally good accuracy. One should also notice that the 
pole of F at s = 1 appears through C(Zr - 1) in the second term, while for s = i, the 
apparent singularities of the first and second tenns cancel each other and no pole is formed. 

A closer, quantitative idea about the integral can be got from the following closed 
expression for it: 

K, being again the modified Bessel function of the second kind. In particular, by calling 
the integral 

(t + t-1) 

one has 

Z(n, 0) = exp (-e) = I ( n ,  1) Z(n, 1) = ZKo(nnl/ii/a) 
n 6  

Z(n, 3 )  = 3a2 + 3nna4% ir2n2A f n2n2 A E exp (-q) 
As functions of n,  all these expressions share the common feature of being exponentially 
decreasing with n. 

4. The general case a, b, c, q # 0 

This case is more difficult. To handle it, we can choose to go through the whole derivation of 
the ChowlaSelberg formula for the quadratic form Q and see the differences introduced by 
the inhomogeneity (the constant 4). Instead, here we will undertake a more down-to-earth 
derivation, which will be similar to the ones that we have successfully employed several 
times in former papers-in particular to obtain (8) and (9). Since the technicalities of the 
method have been abundantly discussed before [2] (see also [4]), here we will consider the 
main steps of the proof only. They are the following. (i) Rewrite the initial expression (3), 
(8), by using the gamma-function identity 

(ii) Expand the exponential in terms of power series of m and n and interchange the 
order of the summations, i.e. the sum over such expansion with the sums over m and n 
or-eapivalently in this case-use Jacobi's theta-function fundamental identity (as can be 
found, for instance, in [8]). The equivalence of both methods was proven explicitly in 
[9]. The second one starts here from a trivial rewriting of the non-negative quadratic form 
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Q(m, n) as the sum of two squares 

Q(m, n) = a [(m + + 
and proceeds by considering the summation over m, while treating first n as a parameter. 
(iii) Finally, make the following change of variables (for convenience): 

2nm 
a n t  

U=- 

and use the same idea as in (10) of rewriting the double sum as a sum over the product mn 
and (a finite one) over the divisors of the product 

(this factor appears when the change of variables is performed). On the other hand, the 
term c,, bn/(2a) in the first square of the decomposition (16) (that may he written 
(m + .$)2 + n2) leads to a cosine factor in the find expression, e.g. 

cos(2n$) = cos(nnb/a) . (19) 
This is also explained in detail in [Z] @ut notice the small mistake in the first of these 
references, that was later corrected in the subsequent ones). 

By doing all this, the following generalized expression is obtained 

F(s;  a, b, c; q) =~ c ' [Q(m,  n) + 4]-' = e ~ ' ( a m 2  + bmn + cn2 + q)-5 
m . n a  m . " d  

x lm dt t'-312exp { -- n;fi [(l + Z)  t + t - j  

where the function C&, p )  (one-dimensional Epstein-Hunvitz or inhomogeneous Epstein) 
is given by 

(21) 

and is studied in full detail in [lo] (with numerical tables, plots, and a couple of explicit 
physical applications). 

It is remarkable that the integral inside the series of the new expression can still be 
written in a closed form using (12)-as in the case of (10). Now using the integral 
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we obtain, in particular, 

which are again exponentially decreasing with n. 
Expression (24) itself can also be written in terms of these Bessel functions: 

2bl/jia"-' 
F(s; a, b, c; q )  = ~ C E H ( ~ .  k q l A ) a - '  + r(s)ky- l /z  r(s -  SE& - i, 4aq/A) 

Equation (24) is the fundamental result of this paper and must be given a name. We propose 
to call it inhomogeneous or the generalized ChowlaSelberg formula. To our knowledge, it 
has never appeared before in the mathematical (or physical) literature. 

5. Explicit application of the formula in quantizing gravity through the Wheeler- 
De Witt equation 

As discussed in [I], the quantization of gravity in 2+l dimensions by means of the Wheeler- 
De Witt equation, in a spacetime with the topology R x T2 (@ being the two-dimensional 
torus) of standard m e ~ c  given by (2) ,  proceeds through the calculation of the zeta function 
corresponding to the basic differential operator Do, which has a spectral decomposition 
given by (1). In terms of the function Fe; a, b, c;  q )  (equation (3)). the zeta function of 
DO is 

<D0(s) = F (s; 4a2/q, -~z'T~/sz, 47r2(z; + +/s; v.) . (U) 
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The quantity of interest is the determinant of the operator DO (see [I]). This is most 
conveniently computed by means of its zeta function. In particular: 

det'/2Do = exp [-&$,(O)] . (28) 

Thus, we must now calculate the derivative of (24) at s = 0. We have, for the general 
function F(s;  a ,  b, c: q), 

2n 6 F ' ( 0  a, b, c; q) = h a  + 2<;,(0,4aq/A) - -<EH( - i, 4uq/A) 
a 

m 

+ 4 E n - ' c o s ( n a b / a ) E d e x p  
fl=l dln 

where 
m 

<AH(O; p )  = ~ - ~ f i +  41.p + 2 p ' / 4 x n - ' / 2 K ~ / 2 ( 2 n n , @ )  (30) 
" 4  

while for <m(-b; p)  the principal part prescription (PP) is to be used (see [2,13,141): 

Finally, for the determinant of Do, we obtain 
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with 
(31) above, putting p = V0/(4xzq). This yields 

(0; V0/(4?rzrz)) and CEH (-4; VO/(~Z~.CZ)) being given by expressions (30) and 

We observe again that the final formula is really simple since, in practice, it provides 
a very good approximation with just a few terms, which are, in Nm, elementary functions 
of the relevant variables and parameters. This is so, because the infinite series that appear 
converge extremely quickly (terms exponentially decreasing with n). In an asymptotic 
approach to the determinant, only the first line in (33) is relevant (as we will show) and the 
three series can be eliminated altogether. 

From the detailed analysis in 111, it fol!ows that the quantity to be calculated now is the 
derivative with respect to V, of the above determinant, since this quantity vanishes preciseIy 
at the solutions of the Hamiltonian constraint (always in the language of quantization through 
the corresponding Wheeler-De Witt equation). In other words, the solutions of the equation 

a 
avo - detIDDo = 0 (34) 

will yield the conditions that the quantized magnitudes and parameters are bound to satisfy 
as a consequence of the Wheeler-De Witt equations. If this does not provide all the solutions 
of such (very involved) differential equations, at least it gives us important clues about their 
behaviour (this is one of the two basic problems of the approach in [l], namely that of 
understanding the determinant of DO). After some calculations one finds that (34) can be 
written as 

(here the primes mean derivatives of the Bessel functions). In principle-the consistency of 
the approximation is to be checked U posferiori-equation (35) can be reduced to the very 
simple expression 
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The analysis of this last equation is easy to do. From its discriminant it turns out that real 
solutions can only be obtained when 

(2) 9 6 4 (I) .or TZ > Z~ 

d') = 1 + 2 (1 - m) = 0.341 041 03 
2 -  R 

with 

1 + m) = 2.932 19852. 
R 

(37) 

Moreover, the special situation when q = 1 leads to the non-physical result Vo = - 4 ~ .  
Now, from the constraint > 0 (in order for the whole approximation to have sense) 
we see that the second possibility in (37) just disappears. For the first, when rz + 0 it 
turns out that m - 2 n / ~  + w or m + 2. When zz moves within the allowed 
range 0 c TZ < of 
the quadratic equation (36) sweep the following intervals 

(the first interval of (37)), the corresponding two solutions 

in the order indicated, respectively. It is easy to check that the first of these two aternatives 
(corresponding to the bigger root of (36)) provides an absolutely consistent approximate 
solution to the exact equation (35). On the contrary, the second alternative (corresponding to 
the smaller root of (36)) does not actually provide a consistent approximate solution (unless 
rz is close to T;)). Direct investigation of other possible roots of (35) (e.g. involving some 
terms of the series) is a quite difficult issue. 

6. An alternative treatement by means of Eisenstein series 

An alternative way of treating the general case is the following (see [l]). The inhomogeneity 
(the q-term here) is taken care of by the simplest (but hardly economic) method of 
performing a binomial expansion of the sort [141 

where E(z, s) is an Eisenstein series (see, for instance, Lang [ll] or Kubota [12]), which 
is obtained from F(s; a, 6, c; 0) by doing the substitution 

(41) 
U 

c = c -  
2 

2 z = a + i u  

so that 
" 

m.n=O 
E(z,s) = (u/2)slm + n P  (42) 

and bas the series expansion 
r(i - s /2 )~ (2s  - 1) 

E(z,s) = 2 W )  + 2Jj?(u/2)'-S 
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It is important to notice, however, that when doing things in this last way the final 
result is expressed in terms of three infinite sums, while in the first general procedure only 
one infinite sum appears (together with a finite sum, for every index n, over tho divisors of 
n). and it is very quickly convergent. Notice, moreover, how the d-term in the exponent 
in (24). when expanded in power series, gives rise to the binomial sum corresponding to 
the last treatment. The advantage of using the method developed in section 5, stemming 
from (24), seems clear (expanding a negative exponential is, in general, computationally 
disastrous). 

7. Conclusions 

The main results of this paper have been the derivation of (24) which generalizes the 
Chowla-Selberg formula (IO) and its physical application to calculate the determinant (32) 
and its derivative (equations (35) and (36)). To have at our disposal an exact expression for 
dealing with inhomogeneous Epstein zeta functions is certainly an interesting thing from 
the physical point of view, since these kind of zeta functions appear frequently in modern 
applications that are no longer restricted to zero temperature or Euclidean spacetime. The 
simplicity of the result is remarkable. Namely, the fact that, in practice, we just need a 
couple of terms of (24) even if we want to obtain very accurate numerical results. 

nYo problems were singularized out in 111 as the main difficulties that appear in the 
quantization of (2+1)-dimensional gravity through the Wheeler-De Witt equation: (i) to 
give grounds for the choice of the specific operator ordering of the Hamiltonian constraint 
which leads to the Wheeler-De Witt equation of the quantized system, and (ii) to understand 
the functional dependence of the determinant det’” Do in terms of the relevant variables 
and to obtain its extrema as a function of the potential VO. In the present paper we have 
been able to solve problem (ii)-at least partially-by means of a numerically consistent 
approximation. Furthermore, we now also have the possibility, through (35) and (36), of 
getting relevant hints which could lead to the solution of problem ( i ) -a t  least in a crude 
way. In the sense that if, once analysed in detail, the constraints (39) turned out to be 
unphysical, that should lead us to conclude that probably the operator ordering chosen in 
the Hamiltonian constraint (and thus the Wheeler-De Witt equation itself which emerges 
from it) ought to be modified. 

Also to be noticed is the more technical point that, in general, when performing the 
analytic continuation through s (necessary, e.g., for the calculation of determinants of 
differential operators), or when taking the derivative of the series function F with respect 
to s at some particular value of s, it may well happen that we hit a pole since, in general, 
this continuation is a meromorphic function of s. That occurs in our case for s = 1. Such 
a situation can be dealt with in the usual way, by means of the principal-part prescription 
[13,14]. In [14] (see also [Z]), we discuss several explicit examples (appearing in physical 
theories) where the precise manner of doing so is clearly explained, all the way down to 
the numerical results (see also [lo]). 

Apart from the physical application that we have considered here-dealing directly 
with the generalization of the Chowla-Selberg formula derived above--in general our new 
expression will certainly be useful in physical situations involving massive theories, finite 
temperatures or a chemical potential in a compactified spacetime. This is the physical 
meaning to be attributed to the constant q .  On the contrary, for mathematical uses 
in number theory the consideration of inhomogeneous quadratic forms for defining zeta 
functions does not seem to be especially relevant. This would explain why such formulae 
are not to be found in the mathematical literature, its derivation being, however, anything 
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but straightforward. 
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